Abstract

We report on a first-principles study of a novel band modulation in zigzag double-walled boron nitride nanotubes (DBNNTs) by applying radial strain and coupled external electric field. We show that the band alignment between the inner and outer walls of the DBNNTs can be tuned from type I to type II with increasing radial strain, accompanied with a direct to indirect band gap transition and a substantial gap reduction. The band gap can be further significantly reduced by applying a transverse electric field. The coupling of electric field with the radial strain makes the field-induced gap reduction being anisotropic and more remarkable than that in undeformed DBNNTs. In particular, the gap variation induced by electric field perpendicular to the radial strain is the most remarkable among all the modulations. These tunable properties by electromechanical coupling in DBNNTs will greatly enrich their versatile applications in future nanoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.