Abstract
We present a theoretical study of two- and three-dimensional massless Dirac one-component plasmas embedded in a constant uniform magnetic field. We determine the wavefunctions and Landau energy levels of a massless Dirac fermion in a constant magnetic field. On this basis we consider magnetism of Fermi fluids of massless charged particles. We show that such a three-dimensional Dirac plasma consisting of fermions with the same helicity has its own magnetic moment. We also consider the limit of strong magnetic fields and investigate the De Haas–van Alphen effect. We derive the Kubo formula for the electrical conductivity tensor of massless Dirac plasmas and consider the Shubnikov–de Haas effect. In addition, we propose a model of the static conductivity tensor and employ the matrix version of the classical method of moments to derive a Drude-like formula for the dynamic conductivity tensor for massless Dirac plasmas. We find that the electrical conductivity tensor for Dirac fermions with the right helicity is not isotropic in the plane perpendicular to the magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.