Abstract

We have studied the phenomenon of electromagnetically induced transparency (EIT) of 87Rb vapor at room temperature in a magnetic field with an arbitrary angle to the laser propagation direction. Rather than exposing atoms to a parallelled or transverse magnetic field as usual, in our work, we apply a magnetic field (up to 45 Gauss) with an arbitrary angle to the laser propagation direction and the spectra become much more complex. More EIT dips are observed due to the Zeeman splitting on the D2 line of 87Rb in a -type configuration. With a 5 Torr N2 buffer gas in the thermal 2 cm vapor cell, the state has a very short effective lifetime, corresponding to a large energy broadening, which removes the velocity selective optical pumping effect almost completely and keeps the high resolution EIT spectrum for the energy splitting of 87Rb in magnetic fields. The shifting of the EIT resonances with the strength of the applied magnetic field coincides well with the theory based on a full matrix Hamiltonian combined with a spectral decomposition method. Our work can be extended to measure the magnetic field vector in space. The effects of the detuning of the probe and coupling beams on the spectral lines are also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call