Abstract

Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system, under the influence of a uniform magnetic field, is theoretically investigated. In this regard, the effects of external magnetic field and the geometrical size of the pseudo-dot system on the absorption as well as refractive index and the group velocity of the probe light pulse are investigated. The results show that the electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field are affected by the external magnetic field and the geometrical size of the pseudo-dot system. Also, electromagnetically induced transparency and the group velocity of light can be controlled via the external magnetic field and geometrical size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call