Abstract

In this paper, we review our recent experimental studies on electromagnetically induced transparency (EIT) from electron spin coherences in semiconductor quantum wells. Coherent Raman resonances, manifestations of EIT from electron spin coherences at relatively low pump intensities, were demonstrated in both V-type and Λ-type three-level systems via heavy-hole exciton and trion transitions in undoped and doped quantum wells, respectively. Coherent Raman resonances from electron spin coherences via light-hole transitions were also demonstrated in a waveguide geometry that enables a long optical interaction length as well as a large absorption coefficient. Experimental approaches that can avoid or reduce detrimental many-body effects in quantum wells are suggested for the realization of nearly ideal EIT processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call