Abstract

The paper describes a novel application of an electron beam ion trap as a plasma target facility for intense laser–plasma interaction studies. The low density plasma target (∼1013/cm3) is confined in a mobile cryogenic electromagnetic charged particle trap, with the magnetic confinement field of 1–3T maintained by a superconducting magnet. Ion plasmas for a large variety of ion species and charge states are produced and maintained within the magnetic field and the space-charge of an energetic electron beam in the “electron beam ion trap” (EBIT) geometry. Intense laser beams (optical lasers, X-ray lasers and upcoming “X-ray free electron lasers” (XFEL)) provide strong time varying electromagnetic fields (>1012V/cm in femto- to nano-second pulses) for interactions with electromagnetically confined neutral/non-neutral plasmas. Experimental scenarios with intense photon fields on ionization/excitation processes, the ionization balance, as well as photon polarization effects and tests with intense lasers that utilize the ion plasma target are outlined. A first test of the plasma target with the PHELIX high intensity laser at GSI is described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call