Abstract

The metallic single walled carbon nanotubes have been proposed as a promising inter connector in intra-chip and inter-chip packaging applications as well as passive devices for future generation terahertz IC (Integrated Circuit) technology, due to their superior electrical and thermal properties compared with those of copper. In this paper a theoretical investigation is carried out to predict phase and group velocities and the attenuation characteristics of single walled metallic carbon nanotubes (SWCNTs), and bundled SWCNTs in the terahertz regime. The expressions for attenuation constant, phase constant, phase velocity, and group velocity have been derived using transmission line theory. It is found that the predicted phase and group velocities in single SWCNT, bundled SWCNTs are strongly frequency dependent and increases with frequency. It is also noticed that the group velocity decreases after having a peak at around 100 GHz for both single SWCNT and bundled SWCNT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.