Abstract

In this study, porous carbon has been prepared through potassium hydroxide (KOH) activation of coconut fiber (CF) and subsequent carbonization in the presence of an inert gas. The activated carbons (AC) were prepared via carbonization of the precursor at different temperatures. Subsequently, their electromagnetic wave absorption (EMWA) performance was investigated at X-band frequency. The phase crystallinity, porous features, and degree of graphitization of the activated carbons were studied using XRD, nitrogen adsorption/desorption isotherm, and Raman spectroscopy, respectively. Using the BET method, the activated carbon prepared at 750°C displayed a high specific surface area of 602.9m2g−1 and an average pore size of 6nm, which confirms the extant of mesopores. The EMWA was studied using COMSOL Multiphysics software based on the finite element method. Results show that the activated carbon prepared at 750°C attained an optimal reflection loss of −45.6dB at 10.96GHz with a corresponding effective bandwidth of 3.5GHz at a thickness of 3.0mm. In conclusion, this study interestingly shows that porous carbon obtained from coconut fiber has great potential for attenuating electromagnetic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.