Abstract

Towards a preclinical prototype for diagnostic and monitoring of cerebral pathologies, here we present the 3D electromagnetic (EM) virtual prototyping of different clinical scenarios as an instrument for studying the interaction of biological tissues with EM waves, for designing a microwave brain imaging scanner and for generating a set EM fields usually required by imaging algorithms. We employ a full-wave modelling, which uses a Method of Moment (MoM) solver with high order basis functions and includes frequency variable electrical parameters for each component. The model of the microwave imaging system consists of 24-element conformal antennas, an anthropomorphic adult human head, and a spherical shape blood-filled as stroke. Here, the simulated system and data are tested applying an imaging algorithm based on Truncated Singular Value Decomposition (TSVD) and Born approximation, but they can be combined with other microwave imaging algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call