Abstract
A transverse flux linear motor is a special type of linear motor with a high thrust force density, and it has broad application prospects in the field of linear direct-drive systems. In the process of oil production, the vibration of the linear motor poses a significant amount of harm to the system due to its special slender structure. This paper focuses on the electromagnetic vibration of a transverse flux permanent magnet linear submersible motor (TFPMLSM). Firstly, the no-load air gap flux density is calculated based on the field modulation principle. Secondly, the radial electromagnetic force (REF) of the TFPMLSM is calculated, and the finite element method (FEM) is used to analyze the time-space and spectral characteristics of the REF. Then, the influence of secondary eccentricity on the frequency spectrum of the REF is further concluded. Finally, the natural frequencies of each vibration mode are calculated using the modal superposition method and the influence of the REF on the motor vibration is obtained through magnetic-structural coupling analysis. The research results found that the motor does not cause resonance at low speeds, and the fundamental frequency of REF has the greatest impact on electromagnetic vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.