Abstract

Magnetic photonic crystals are periodic arrays of lossless materials, at least one of which being magnetically polarized. Magnetization, either spontaneous or induced, is associated with nonreciprocal effects, such as Faraday rotation. Magnetic photonic crystals of certain configuration can also display strong spectral asymmetry, implying that light propagates in one direction much faster or slower than in the opposite direction. This essentially nonreciprocal phenomenon can result in electromagnetic unidirectionality. A unidirectional medium, being perfectly transmissive for electromagnetic waves of certain frequency, freezes the radiation of the same frequency propagating in the opposite direction. The frozen mode has zero group velocity and drastically enhanced amplitude. The focus of our investigation is the frozen mode regime. Particular attention is given to the case of weak nonreciprocity, related to the infrared and optical frequencies. It appears that even if the nonreciprocal effects become vanishingly small, there is still a viable alternative to the frozen mode regime that can be very attractive for a variety of practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.