Abstract

Results from three-dimensional numerical simulations of drift-Alfvén turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma β we observe an increase of the transport if the viscous damping of the self-generated shear flows is absent. This behavior is in contrast to the standard argument that sheared flows suppress turbulence and transport via a decorrelation mechanism. An explanation of this behavior in terms of the transport related to magnetic flutter is proposed. The characteristics of the E×B flux are investigated using probability density distribution functions (PDFs). Although they are not Gaussian, no signs of algebraic tails in the PDFs are observed. The PDFs of the pointwise transport are found to agree well with a folded Gaussian, while the PDFs of the spatially averaged transport are in good agreement with an extreme value distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.