Abstract

We address the problem of calculating electromagnetic transition matrix elements between states of a particle in spherically symmetrical potentials with no assumed boundary conditions at finite distance (free-boundary-condition method). For this, the Schr\"odinger equation is solved in a finite box of radius $R$ and bound and continuum states, appropriately normalized, are numerically represented, through a variational finite-basis-set (B-spline) approach. The equivalence between the three transition operator forms (length, velocity, acceleration), within this approach, is discussed, and bound-continuum and continuum-continuum matrix elements are calculated in all three gauges. Results for the strong electromagnetic radiation of hydrogen are presented through the calculation of two-photon ionization cross sections and photoelectron angular distributions. It is demonstrated that the present approach is well suited for the calculation of multiphoton transitions when ionization in the continuum is allowed (above-threshold ionization). With the free-boundary-condition method complete control over the density of scattering states is feasible and, as the result of that, the degeneracy in the continuum between partial waves is preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.