Abstract

In this paper, the electromagnetic torque (EM) performance analysis of a parallel hybrid excitation machine (PHEM) is investigated. It is composed of a permanent magnet (PM) part and variable reluctance part. The flux paths of the two parts are independent and the armature windings are connected in series. PHEM is an axial parallel coupling of two different types of brushless machine. The mechanisms of EM torque for the two parts are quite different and many problems of torque coupling still remain unsolved. A 2-D EM-circuit coupling simulation model is built to analyze the torque characteristics and coupling relationships. The simulation results indicate that the PM part plays a main role in the output torque of PHEM. The large inductance ripple of variable reluctance part would cause large torque ripple in PHEM. The target machine is experimentally tested to verify the output torque characteristics. Furthermore, the torque-angle characteristics are studied with different field current and it shows that the best load angle could be around 110° to get maximum output torque and relatively smaller torque ripple.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call