Abstract

Electromagnetic (EM) telemetry is one of the key research subjects that has increased application in transmitting real-time data between the borehole and surface during drilling. There are several methods that can be used to model an EM telemetry system, including the method of moments (MoM) and the electric field integral equation method. We have developed a pulse basis function for the MoM, which assists in the analytical estimation of thin wire kernel integrations and avoids singular problems when simulating current distributions. The scattering field is solved using the current distribution. We examine the method using a simple example of vertical drilling. In the model, a vertically placed drill string is driven through a layered earth model. The drill string represents a long, thin wire antenna with a source located near the drill bit. The validity of the method is confirmed by comparing our results to the analytical solution in a half-space model as well as the current distributions along the drill string derived from the proposed method with those derived from a commercial finite-element solver, COMSOL-Multiphysics. Furthermore, the efficiency of this method is demonstrated by comparing its computational costs with those of COMSOL. The simulated EM telemetry in a known geologic setting is then compared with a field data example. These comparisons show that the proposed method is accurate and efficient. Moreover, we develop insights into how the parameters needed for calculations alter current distributions along the drill string and the signal received at the surface. The proposed method is therefore useful for obtaining the optimal design parameters for EM telemetry systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call