Abstract

Magnetotelluric and geomagnetic deep sounding measurements were carried out in the magmatic arc and forearc regions of northern Chile between 19.5° and 22°S to study the electrical conductivity structures of this active continental margin. The instruments used covered a very broad period range from 10 −4 s to approx. 2 × 10 4 s and thus enabled a resolution of deep as well as shallow structures. In this paper we focus on the interpretation of data from an east-west profile crossing Chile from the Pacific coast to the Western Cordillera at 20.5°S. A decomposition of the impedance tensors using the Groom-Bailey decomposition scheme shows that a two-dimensional interpretation is possible. The resulting regional strike direction is N9°W. Two-dimensional models were calculated in this coordinate frame and include the significant bathymetry of the trench as well as the topography of the Andes. The final model shows a generally high resistivity in the forearc and a very good conductor below the Precordillera. Unlike earlier models from areas further south, a good conductor is not observed below the magmatic arc itself. This correlates with the so-called Pica gap in the volcanic chain and a higher age of volcanic activity compared with adjacent areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.