Abstract
AbstractWhile quantum key distribution (QKD) is a theoretically secure way of growing quantum-safe encryption keys, many practical implementations are challenged due to various open attack vectors, resulting in many variations of QKD protocols. Side channels are one such vector that allows a passive or active eavesdropper to obtain QKD information leaked through practical devices. This paper assesses the feasibility and implications of extracting the raw secret key from far-field radiated emissions from the single-photon avalanche diodes used in a BB84 QKD quad-detector receiver. Enhancement of the attack was also demonstrated through the use of deep-learning model to distinguish radiated emissions due to the four polarized encoding states. To evaluate the severity of such side-channel attack, multi-class classification based on raw-data and pre-processed data is implemented and assessed. Results show that classifiers based on both raw-data and pre-processed features can discern variations of the electromagnetic emissions caused by specific orientations of the detectors within the receiver with an accuracy higher than 90%. This research proposes machine learning models as a technique to assess EM information leakage risk of QKD and highlights the feasibility of side-channel attacks in the far-field region, further emphasizing the need to utilise mechanisms to avoid electromagnetic radiation information leaks and measurement-device-independent QKD protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.