Abstract

Growing electromagnetic pollution caused by the rapid proliferation of sophisticated electronic devices has increasingly invited concerns. Cement based composites are commercially established in constructions, also capable of electromagnetic interference shielding besides other multifunctional utilities. Cement matrix a key ingredient in mixes is considered to be the best adhesive that holds together the aggregates. In this work these composites filled with conductive graphite particles were prepared using dry tumble mixing modus operandi followed by compression and subsequent curing with water. Prolong tumble mixing ensures even dispersion of constituents while compression develops a stronger bond to the aggregates besides patterning of graphite particles in cement matrix. This patterning of conductive graphite particles is vital for producing enhanced electrical and dielectric properties. Effects of increasing graphite concentration on electrical properties and electromagnetic interference shielding effectiveness in X band were investigated. The cement with 20 wt% graphite shows an enormous electrical conductivity 2.74 × 10 -1 S/cm with a significant shielding effectiveness of 76 dB. Both are ascribe to graphite network formation in the cement matrix. Reflection and absorption of EM radiation increases with the rise of graphite level in cement composites. The contribution of absorption to the total SE of the system is found to be larger than that of reflection. Permittivity of compressed graphite/cement composite > compressed cement > uncompressed cement has been ascertained. Studies revealed that compression pressure and inclusion of graphite, both affect the porosity of cement by reducing the pore volume. Copyright © 2015 VBRI Press.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.