Abstract
We calculate the self-force acting on a charged particle on a circular geodesic orbit in the equatorial plane of a rotating black hole. We show by direct calculation that the dissipative self-force balances with the sum of the flux radiated to infinity and through the black hole horizon. Prograde orbits are found to stimulate black hole superradiance, but we confirm that the condition for floating orbits cannot be met. We calculate the conservative component of the self-force by application of the mode sum regularization method, and we present a selection of numerical results. By numerical fitting, we extract the leading-order coefficients in post-Newtonian expansions. The self-force on the innermost stable circular orbits of the Kerr spacetime is calculated, and comparisons are drawn between the electromagnetic and gravitational self forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.