Abstract

A high-power laser ablating solid targets induces giant electromagnetic pulses (EMPs), which are intimately pertinent to laser parameters, such as energy and pulse width. In this study, we reveal the features of EMPs generated from a picosecond (ps) laser irradiating solid targets at the SG-II picosecond petawatt (PSPW) laser facility. The laser energy and pulse, as well as target material and thickness, show determinative effects on the EMPs’ amplitude. More intense EMPs are detected behind targets compared to those at the other three positions, and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10 μm to 20 μm, which is suppressed when the laser pulse width is enlarged. The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call