Abstract

Electromagnetic properties of dielectric and magnetic composite materials were studied with various weight fractions and particle sizes of ferrite. The composite materials were prepared through Ni-Zn spinel ferrite and silicon elastomer, and were characterized with regard to permittivity, permeability, loss tangente, and loss tangentu. Those properties of Ni-Zn spinel ferrite were approximately 7.0, 8.4, 0.01 and 0.1 MHz to 150 MHz, respectively; loss tangentu, in particular, increased nearly exponentially with frequency above 80 MHz. Increase of loss tangentu was overcome by composite with polymer. The 40 wt. % loaded composite material changed these properties (approximately 3.8, 2.2, 0.003 and 0.1 at 161 MHz.); therefore, a higher frequency can be used. This material was optimized by particle size distribution. Composite material with smaller particle size is most useful because it shows similar magnetic loss of up to 211 MHz. Magneto-dielectric composite materials are more useful for antenna because they have lower values of complex permittivity and permeability, and higher application frequency. These results are certificated by simulation of antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.