Abstract

Electromagnetic “pinned” solitons in the form of stationary nonlinear waves are studied within the framework of an inertial magneto-hydrodynamic model. These structures, that can arise when a charged source moves in a magnetized plasma, have a velocity that is equal to the source velocity and, hence, appear as “pinned” structures that envelope the source. We investigate the excitation of such solitons in the Low Earth Orbit region due to the passage of charged orbital debris objects. The spatial size of these electromagnetic solitons, typically of the order of a few ion skin depths, can be very large in this region. Such solitons can be detected using a variety of ground- or orbit-based radio sounding techniques and may provide a convenient additional means of tracking small sized orbital debris objects that are difficult to spot optically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call