Abstract

Electromagnetic field penetration through a curved narrow slot in a planar conducting surface and coupling to a curved, loaded thin wire on the shadow side are determined in the time domain (TD) and the frequency domain (FD) by integral equation methods. Coupled integral equations are derived and solved numerically for the equivalent magnetic current in the slot and the electric current on the wire, from which the field that penetrates the slotted surface is determined. One employs a piecewise linear approximation of the unknown currents and performs equation enforcement by pulse testing. The resulting TD equations are solved by a scheme incorporating a finite-difference approximation for a second partial time derivative which allows one to solve for the unknown currents at a discrete time instant t + 1 in terms of the known excitation and currents calculated at a discrete time instant t and earlier. The FD equations are solved by the method of moments. A hybrid time-domain integral equation -- finite-difference time-domain solution technique is described whereby one solves for the field which penetrates a slotted cavity-backed surface. One models the fields in the exterior region and in the slot with integral operators and models the fields inside themore » cavity with a discretized form of Maxwell's equations. Narrow slots following various contours were chemically etched in thin bass sheets and an apparatus was fabricated to measure shadow-side fields, electric current on a thin wire on the shadow side, and, separately, fields inside a rectangular cavity which backed the slotted brass sheet. The experimentation was conducted at the Lawrence Livermore National Laboratory on a frequency-domain test range employing a monocone source over a large ground plane. One observes very good agreement among the experimental and theoretical results.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.