Abstract

The paper presents an investigation of the plasma fluctuation in the SMOLA helical mirror, which is suspected to be responsible for anomalous scattering. The helical mirror confinement is effective when the ion mean free path is equal to the helix pitch length. This condition can be satisfied in hot collisionless plasma only by anomalous scattering. The wave, which scatters the passing ions, is considered to receive energy from the trapped ions. The oscillations of the electric field in the helically symmetric plasma were observed in experiment. The oscillations have both regular highly correlated and chaotic components. The dependency of the regular component frequency on the Alfvén velocity is linear for $V_{\rm A} < 2.8 \times 10^6\ \text {m}\ \text {s}^{-1}$ and constant for higher values. It is shown experimentally that the condition for the wave to be in phase resonance with the trapped ions is satisfied in a specific region of the plasma column for the highly correlated component. The amplitude of the chaotic component (up to $3\ \text {V}\ \text {cm}^{-1}$ ) is higher than the estimated electric field required for the ion scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call