Abstract

In EMS-MAGLEV high-speed transport systems, devices for propulsion, levitation and contactless on-board electric power transfer are combined in a single electromagnetic structure. The strong coupling among the windings affects the performance of each device and requires the utilization of numerical codes. The paper describes an overall optimization procedure, based on a suitable mathematical model of the system, which takes into account several items of the system performance. The parameters of the model are calculated by an automated sequence of FEM analyses of the configuration. Both the linear generator output characteristics and the propulsion force ripple are improved applying the procedure to a reference configuration. The results are compared with the results obtained by a sequence of partial optimizations operating separately on two different subsets of the geometric parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call