Abstract

This study focuses on microscale anisotropy in rock structure and texture, exploring its influence on the macro anisotropic electromagnetic parameters of the geological media, specifically electric conductivity (σ), relative permittivity (ε), and magnetic permeability (μ). The novelty of this research lies in the advancement of geophysical monitoring methods for calculating cross properties through the estimation of effective parameters—a kind of integral macroscopic characteristic of media mostly used for composite materials with inclusions. To achieve this, we approximate real geological media with layered bianisotropic media, employing the effective media approximation (EMA) averaging technique to simplify the retrieval of the effective electromagnetic parameters (e.g., apparent resistivity–inversely proportional to electrical conductivity). Additionally, we investigate the correlation between effective electromagnetic parameters and geodynamic processes, which is supported by the experimental data obtained during monitoring studies in the Tien Shan region. The observed decrease and increase in apparent electrical resistivity values of ρk over time in orthogonal azimuths leads to further ρk deviations of up to 80%. We demonstrate that transitioning to another coordinate system is equivalent to considering gradient anisotropic media. Building upon the developed method, we derive the effective electric conductivity tensor for gradient anisotropic media by modeling the process of fracturing in a rock mass. Research findings validate the concept that continuous electromagnetic monitoring can aid in identifying natural geodynamic disasters based on variations in integral macroscopic parameters such as electrical conductivity. The geodynamic processes are closely related to seismicity and stress regimes with provided constraints. Therefore, disasters such as earthquakes are damaging and seismically hazardous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.