Abstract

When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by Nelson (1991) [8]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call