Abstract

The accurate electromagnetic modeling of both low- and high-frequency physics is crucial in the signal and power integrity analysis of electrical interconnects. The boundary element method (BEM) is appealing for lossy conductor modeling because it can capture the frequency-dependent variation of skin depth with only a surface-based discretization of the structure. Conventional BEM formulations rely on the mutual coupling of electric and magnetic fields, and can become inaccurate or unstable at low frequencies. We develop a new full-wave BEM formulation based on potentials which can accurately model lossy conductors from exactly DC to very high frequencies. A new set of simple boundary conditions is proposed along with a modified Lorenz gauge to ensure that the proposed formulation has a stable condition number down to DC. Moreover, coupling the potential-based integral equations to a circuit model allows the straightforward extraction of network parameters. Realistic numerical examples at both the chip and package level demonstrate the accuracy and stability of the proposed method from DC to high frequencies, beyond the capabilities of state-of-the-art BEM formulations based on fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.