Abstract

This study addresses the problem of low-cost microlens fabrication and outlines the development of a novel microforging apparatus for microlens mold fabrication. The apparatus consists of an electromagnetic impact tool which strikes a piston with a hardened steel ball into a workpiece. The impact creates a spherical indentation which serves as a lens cavity. The microforging apparatus is controlled by a microprocessor control unit communicating with a personal computer and enables on-the-fly variation of electromagnetic excitation to control the microforging process. We studied the effects of process parameters on the diameter of the fabricated lens cavities inspected by a custom automatic image processing algorithm. Different microforging regimes are analyzed and discussed. The surface quality of fabricated cavities has been inspected by confocal microscopy and the influence of fill factor on sphericity error has been studied. The proposed microforging method enables the fabrication of molds with 100% fill factor, surface roughness as low as Ra 0.15 µm and sphericity error lower than 0.5 µm. The fabricated microlens arrays exhibit nearly diffraction-limited performance, offering a wide range of possible applications. We believe this study provides access to microoptical technology for smaller optical and computer vision laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.