Abstract
This work presents the conception, the microfabrication, and the electroacoustic characterization of a new electromagnetic microspeaker based on silicon. The objectives are to get improved sound quality compared to that of conventional microspeakers, while keeping the electroacoustic efficiency as high as possible. An optimized stiffening silicon microstructure let the sound radiator be extremely light and rigid. The mobile part is suspended to the fixed part by silicon suspension springs, which enable large out-of-plane displacement. The acoustic radiator is actuated by an electromagnetic motor, composed of a fixed permanent magnet and a planar coil located on top of the silicon radiator. The piston-like motion of the radiator favored by this structure is very beneficial for the sound quality. Electro---mechano---acoustic characterization of the microfabricated microspeaker showed that the radiator surface could run out-of-plane with displacements higher than ±400 μm, with no mechanical and electrical failure. For an electrical power of 0.5 W, the microspeaker was capable to generate a sound pressure level of 80 dB at 10 cm, from 330 Hz up to 20 kHz frequency. The efficiency reaches 3 × 10ź5, that is to say three times more than typical efficiency of conventional microspeakers. Moreover, as characterization results showed, the existence of very few structural modes and the low electroacoustic distortions evidence the high sound quality of the microspeaker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.