Abstract

We present a new step in the foundation of quantum field theory with the tools of scale relativity. Previously, quantum motion equations (Schrödinger, Klein–Gordon, Dirac, Pauli) have been derived as geodesic equations written with a quantum-covariant derivative operator. Then, the nature of gauge transformations, of gauge fields and of conserved charges have been given a geometric meaning in terms of a scale-covariant derivative tool. Finally, the electromagnetic Klein–Gordon equation has been recovered with a covariant derivative constructed by combining the quantum-covariant velocity operator and the scale-covariant derivative. We show here that if one tries to derive the electromagnetic Dirac equation from the Klein–Gordon one as for the free particle motion, i.e. as a square root of the time part of the Klein–Gordon operator, one obtains an additional term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli equation. However, if one first applies the quantum covariance, then implements the scale covariance through the scale-covariant derivative, one obtains the electromagnetic Dirac equation in its usual form. This method can also be applied successfully to the derivation of the electromagnetic Klein–Gordon equation. This suggests it rests on more profound roots of the theory, since it encompasses naturally the spin–charge coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.