Abstract

Electromagnetic interference (EMI)-shielding materials with remarkable shielding effectiveness (SE) based on dominant absorption are highly desirable, especially if they are also flexible and lightweight. Herein, we prepared MXene (Ti3C2TX, TX-=O,-OH,-F)-based lightweight and absorption-dominant EMI-shielding non-woven fabrics. In view of the porosity and soft properties of textiles, as well as the unique high conductivity and hydrophilicity of Ti3C2TX MXene, Ti3C2TX MXene was coated on the fiber skeleton of three different non-woven fabrics made from polyester, cotton, and calcium alginate. The conductive layer formed by Ti3C2TX MXene on the fiber led to heterogeneous interfaces. They improved the multiple reflection of electromagnetic waves among Ti3C2TX MXene sheets and then contributed to the attenuation of the electromagnetic waves. Among all the samples, calcium alginate/Ti3C2TX MXene reached a maximum SE of 25.26 dB at 12.4 GHz with the fabric thickness of 3.17 mm. Cotton/Ti3C2TX MXene achieved maximum SSEt (ratio of specific shielding effectiveness (SSE) to thickness) of 2301.95 dB cm2g−1 at 1.36 mm with a loading of Ti3C2TX MXene of only 5.77mg/cm3. Further, fabric thickness, layer number, conductivity, and substrate type were selected to analyze the EMI-shielding mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call