Abstract
An effective electromagnetic-interference (EMI) shielding epoxy composite has been fabricated with a combination of multiwalled carbon nanotubes (MWCNTs) and manganese zinc ferrite (MnZn ferrite) fillers. MWCNTs were functionalized to improve dispersibility while manganese zinc ferrite nanoparticles were synthesized via the citrate gel method. The EMI-shielding performance of the fabricated composites was examined. It was found that the composite with a filler ratio of MWNCTs to MnZn ferrite=3:1 obtained the highest EMI shielding effectiveness (SE), with the shielding mechanism dominated by absorption. In addition, the EMI shielding performance of composites was improved by increases in the filler loading and thickness of composites. Composites with a filler loading of 4.0vol% and thickness of 2.0mm achieved an SE of 44dB at 10GHz with the assistance of conductive silver backing. This EMI SE is better than that of composites filled with single conductive filler and comparable with that of commercial EMI absorber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.