Abstract
Anisotropic polyimide (PI)/graphene composite aerogels were fabricated by unidirectional freezing. A poly(amic acid) (PAA) ammonium salt/graphene dispersion was first synthesized by mixing together PAA, H2O, triethylamine (TEA), and graphene and then was successively subjected to one-way freezing, freeze-drying, and thermal imidization. The one-way growth of ice crystals endowed the composite aerogels with highly arranged tubular pores. The PI/graphene composite aerogels possessed anisotropic conductivity, electromagnetic interference (EMI) shielding, heat transfer, and compression performance. Moreover, the composite aerogels with low density (0.076 g·cm-3) exhibited high EMI shielding effectiveness (SE) of 26.1-28.8 dB, and its specific EMI SE value achieved 1373-1518 dB·cm2·g-1 when the graphene content was 13 wt %. The main electromagnetic interference shielding mechanism of these composite aerogels was microwave absorption. The composite aerogels had excellent thermal stability, and their 5% weight loss temperature was higher than 546 °C in nitrogen. This research provided an easy and environmentally friendly approach to prepare lightweight and anisotropic PI-based composite aerogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.