Abstract

An efficient strategy for synthesizing Ag/multi-walled carbon nanotubes-poly(methyl methacrylate) (Ag/MWCNT-PMMA) composites has been proposed. The synthesis concept is based on the modification of oxidized MWCNT with Ag nanoparticles and subsequent distribution of the obtained Ag/MWCNT-Ox hybrids in a PMMA matrix. Herein, Ag/MWCNT-Ox hybrids with various size and content of Ag nanoparticles serve as a tool for tuning the electrical conductivity of the two series of Ag/MWCNT-PMMA composites with MWCNT-Ox content before (4 wt%) and after (10 wt%) the percolation threshold. Adding 0.2 wt% of Ag to the first composite series with nanotubes content of 4 wt% leads to a decrease in the percolation threshold in a three-component system. In the case of the second composite series, the introduction of Ag up to 1 wt% leads to a monotonic increase in the conductivity within one order of magnitude. Ag/MWCNT-PMMA demonstrates high shielding efficiency for incident radiation in the frequency range of 26–37 GHz, most of which is absorbed due to the conductive nature of the material. The improved electromagnetic properties of the Ag/MWCNT-PMMA composites are explained by the uniform distribution of fillers in the polymer, which ensures the formation of a 3D conducting network inside the composite, and by the synergistic interaction between MWCNT and Ag. Thus, Ag/MWCNT-PMMA composites have broad application prospects in the field of electromagnetic compatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call