Abstract
AbstractThermally exfoliated graphene (TEG)/polyurethane (PU) expanded composite samples were synthesized for application in electromagnetic interference shielding (EMIS) in the 8–12 GHz frequency range. The effect of TEG concentration on both the shielding efficiency (SE) and mechanical characteristics of the resultant composite foam was investigated in detail, with the goal of determining the optimal TEG concentration that delivers the best performance in terms of SE and mechanical properties. The TEG filler was characterized using x‐ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Whereas the prepared composite foam samples were examined by Fourier Transform Infrared (FTIR), SEM, Thermogravimetric analysis (TGA) and mechanical testing. The experimental results revealed that the composite foam sample with 5 wt% TEG content exhibits the highest SE to be −25.6 dB (−430.3 dB cm3 g−1). It was also found that the optimal loading of TEG is 3 wt%, resulting in a compromise between SE (−20.4 dB; −345.68 dB cm3 g−1) and mechanical characteristics (compressive strength of 15.5 MPa and compressive modulus of 5.06 MPa). These findings highlight the potential applicability of the synthesized composite foam to a variety of EMIS applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.