Abstract

Graphene aerogel is a promising electromagnetic interference (EMI) shielding material because of its light weight, excellent electrical conductivity, uniform three-dimensional (3D) microporous structure, and good mechanical strength. The graphene aerogel with high EMI shielding performance is attracting considerable critical attention. In this study, a novel procedure to fabricate high EMI shielding graphene aerogel was presented, inspired by the irreversible deformation of hydrogels under mechanical pressure. The procedure involved a mechanical compression step on graphene hydrogels for the purpose of altering microstructures followed by freeze-drying and thermal annealing at 900 °C to generate the final products. Because of the flow of internal liquid caused by mechanical compression, the microstructures of hydrogels changed from a cellular configuration to a layered configuration. After a high degree of compression, GAs can be endowed with homogeneous layered structure and high density, which plays a leading role in electromagnetic wave dissipation. Consequently, the aerogels with excellent electrical conductivity (181.8 S/m) and EMI shielding properties (43.29 dB) could be obtained. Besides, the compression process enabled us to form complex hydrogel shapes via different molds. This method enhances the formability of graphene aerogels and provides a robust way to control the microstructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call