Abstract

Nowadays, various high-performance electromagnetic interference (EMI) shielding materials have enormous application potential in electronic field. However, traditional EMI shielding materials often have high conductivity, resulting in the serious mismatch between the impedance of the material surface and the free space, which will cause a large amount of reflection of electromagnetic (EM) waves, leading to secondary reflection pollution. In this paper, we report a novel flexible EMI shielding composite film with extremely low reflection loss and efficient EM wave absorption, which was prepared by assisted self-assembly based on simple vacuum filtration using carboxymethyl cellulose as the matrix and MWCNT@Fe3O4 synthesized by chemical coprecipitation as the composite functional filler. By adjusting the Fe3O4 coating degree of MWCNTs in the filler, the composite film achieved the construction of a conductive network with high Fe3O4 content. Benefit by the good adaptability of conductivity and magnetic permeability, the composite film has good impedance matching ability and microwave absorption performance. The reflection loss of the composite film with the thickness of 28 μm in the X-band was only 0.23 dB, accounting for 1.7 % of the total loss. This work provides new insights for the development of EMI materials and effective mitigation secondary EM wave reflection pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.