Abstract

With the increasing use of high-frequency electronic and wireless devices, electromagnetic interference (EMI) has become a growing concern due to its potential impact on both electronic devices and human health. In this study, we demonstrated the performance of lightweight, electrically conducting 3D resorcinol-formaldehyde carbon xerogels, of 2.4 mm thickness, as an EMI shieldin the frequency range of 10–15 GHz (X-Ku band). The brittle carbon xerogels revealed complex porous structures with irregularly shaped pores that were randomly distributed. Electrochemical characterization revealed that the material behaved as an electrical double-layer capacitor. The carbon xerogels displayed reflection-dominated (∼ 84%) shielding behavior, with a total EMI shielding effectiveness (SE) value of ∼ 61 dB. The absorption process also contributed (∼ 16%) to the total SE. This behavior is attributed to the carbon xerogels' complex porous network, which effectively suppresses EM waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.