Abstract

3-D printed samples based on acrylonitrile-butadiene-styrene (ABS) loaded with multi-walled carbon nanotubes (CNT), carbon black (CB) and a 50:50 hybrid combination (CNT/CB) were manufactured via fused deposition modelling (FDM). The electromagnetic interference shielding efficiency (EMI SE) of resulting FDM specimens was assessed. Different amounts of CNT, CB and CNT/CB were dispersed in an ABS matrix by melt compounding using an internal mixer. On the basis of the rheological behavior a weight fraction of 3% was selected for the filaments production. The filaments were prepared using a twin-screw extruder and used to feed a commercial FDM machine for 3-D printed specimen's preparation along three different growing directions. The electrical conductivity, the EMI SE and the mechanical properties of the resulting extruded filaments, as well as the 3-D printed specimens, were measured and, they are discussed in terms of the type of filler and growing directions. In general, the conductivity, EMI SE and mechanical properties of 3D printed parts were markedly dependent on the growing direction. Through the experimental findings of this work, an appropriate choice of a polymer nanocomposite formulation alongside the 3-D printing parameters could lead to components manufactured via FDM with optimized EMI SE and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.