Abstract

In this paper, multilayer thermoplastic polyurethane (TPU)/multiwalled carbon nanotubes (MWCNTs) electromagnetic interference shielding composite foams with gradient structure was prepared. The gradient distribution of effective concentration of filler and cell size were realized by selective distribution of MWCNTs into hard domains of TPU, which improved interlayer interface polarization of electromagnetic waves and impedance matching between the material and the air. The average electromagnetic interference shielding efficiency (EMI SE) of TPU/MWCNTs composites with gradient structure is 1.2 times larger than that of homogeneous composites. After foaming, the average EMI SE of the gradient foams was higher than that of the homogeneous foams, with maximum average EMI SE of 35.4 dB. This work is the first time to correlate the interaction of fillers with the soft domains and hard domains of TPU and EMI shielding performance, providing a feasible method for designing lightweight composites with low filler and better EMI shielding performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call