Abstract
ABSTRACTThis article presents the effect of exfoliation, dispersion, and electrical conductivity of graphene sheets onto the electrical, electromagnetic interference (EMI) shielding, and gas barrier properties of thermoplastic polyurethane (TPU) based nanocomposite films. The chemically reduced graphene (CRG) and thermally reduced/annealed graphene (TRG) having Brunauer–Emmett–Teller surface areas of 18.2 and 159.6 m2/g, respectively, when solution blended with TPU matrix using N,N‐dimethylformamide as a solvent. Graphene sheets based TPU nanocomposites have been evaluated and compared for EMI shielding in Ku band, electrical conductivity, and gas barrier property. TRG/TPU nanocomposite films showed excellent gas barrier against N2 gas as compared to CRG/TPU. The EMI shielding effectiveness for neat CRG and TRG graphene sheets is found to be −80, −45 dB, respectively, at 2 mm thickness. The EMI shielding data revealed that TRG/TPU nanocomposites showed better shielding at lower concentration (10 wt %), while CRG displayed better attenuation at higher concentrations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47666.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.