Abstract

High-performance electromagnetic interference (EMI) shielding materials with high flexibility, low density, and hydrophobic surface are crucial for modern integrated electronics and telecommunication systems in advanced industries like aerospace, military, artificial intelligence, and wearable electronics. In this study, we present flexible and hydrophobic MXene/Ni-coated polyester (PET) fabrics featuring a double-layered structure, fabricated via a facile and scalable dip-dry coating process followed by electroless nickel plating. Increasing the dip-dry coating iterations up to 10 cycles boosts the MXene loading content (∼31 wt %) and electrical conductivity (∼86 S/cm) of MXene-coated PET fabrics, while maintaining constant porosity (∼95%). The addition of a Ni layer enhances hydrophobicity, achieving a high water contact angle of ∼114° compared to only MXene-coated PET fabrics (∼49°). Furthermore, the 30 μm thick MXene/Ni-coated PET fabric demonstrates superior electrical conductivity (∼113.8 S/cm) and EMI shielding effectiveness (∼35.7 dB at 8-12 GHz) compared to only MXene- or Ni-coated PET fabrics. The EMI shielding performance of the MXene/Ni-coated PET fabric remains more stable in an air environment than only MXene-coated fabrics due to the outer Ni layer with excellent hydrophobicity and oxidation stability. Additionally, the MXene/Ni-coated PET fabric exhibits impressive Joule heating performance, swiftly converting electrical energy into heat and reaching high steady-state temperatures (32-92 °C) at low applied voltages (0.5-1.5 V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.