Abstract

Electromagnetic interference (EMI) is one of the biggest challenges faced during the production of any electronic device. The effect on the performance of the instrument due to these inevitable interferences must be carefully measured to understand and quantify the electromagnetic compatibility (EMC) of the instrument under test. If the EMI profile of the system does not meet the accepted standards, then it becomes necessary to take measures to reduce the influence of these unwanted interferences so that the equipment can be used in the real world. Unfortunately, research and studies on EMI and EMC have not received their due attention from the scientific community. Moreover, the literature available for this area of research is scattered where different sources provide information on one or more (but not all) aspects of EMI/EMC while ignoring the others. With the objective of encompassing this extremely significant area of research in its entirety, this review presents both EMI measurement techniques and EMI reduction techniques in detail. EMI measurement techniques are presented under two sections that deal with emission testing and immunity testing, respectively. Herein, EMI reduction techniques are presented under four sections, where electromagnetic shielding has been given special attention under which various methods used by the scientific community to measure the shielding effectiveness of a material or microwave absorber and its application in EMI reduction are illustrated. This is followed by EMI filters, circuit topology modification and spread spectrum. This review can help students and young scientists in this area to get an idea of the ways to conduct EMI tests as well as the ways that can be employed to reduce the EMI of the system, depending on the application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call