Abstract

The influence of current-aligned instabilities on magnetic reconnection in weakly collisional regimes is investigated using experimental observations from Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] and large-scale fully kinetic simulations. In the simulations as well as in the experiment, the dominant instability is localized near the center of the reconnection layer, produces large perturbations of the magnetic field, and is characterized by the wavenumber that is a geometric mean between electron and ion gyroradii k∼(ρeρi)−1/2. However, both the simulations and the experimental observations suggest the instability is not the dominant reconnection mechanism under parameters typical of MRX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.