Abstract

In the period from 2008 to 2012, the topic of electromagnetic (EM) induction methods applied to mineral exploration has been the subject of more than 50 papers in journals and more than 300 extended abstracts presented at conferences (about 100 of which contain developments worthy of mentioning). Most of the work at the universities has been on modelling, inversion and data processing, and most of this material is published in the refereed literature. However, academia has also undertaken work on system geometry changes, system calibration and sensor design. There have been papers describing new systems developed for mineral exploration and case histories describing the use of EM methods to directly discover mineral deposits or to map the geology. Most of this work is by the service companies and mining companies and reported in the unrefereed literature. Since 2008, the pace of development of helicopter time-domain systems has slowed and more effort has been directed to developing natural source magnetic systems and to modelling and inverting this data. A number of studies comparing the results from natural source methods with the results from artificial source methods conclude that the natural source methods can see large-scale geological structures usually when there is a weak conductivity contrast with the surrounding material, but the natural source methods are unable to see small features that have a very large conductivity contrast with the country rock. Hence, they are not a good detector of mineral deposits unless one is looking for a large porphyry system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call