Abstract

The results of a study on the suitability of Fe-Ga alloys for torque sensor applications are presented. A Fe81Ga19 rod with a ⟨100⟩ preferred orientation along the length direction is prepared for the torque shaft and as the electromagnetic induction sensitive element, which is wound with three coils for signal excitation, signal pickup, and applied bias magnetic field, respectively. An apparent decrease in the induced voltage signal (peak voltage) of 3.88 mV is observed as the torque loading is 50 N m in the presence of a sine excitation signal (10 V, 1 kHz) and a bias current of 0.5 A. Meanwhile, a good repeatability and stress sensitivity are obtained, especially in the low torque range. These behaviors stem from the stress induced decrease in the magnetic permeability and the rotation of the arranged magnetic moment. Here, we use the Fe81Ga19 alloy as the shaft material; nevertheless, in practical use, the same effect can be achieved by forming a Fe-Ga layer with large magnetostriction on the surface of the torsion shaft. This work shows the prospect of Fe-Ga alloys for non-contact torque sensing, for the large magnetostriction and high sensitivity of magnetization to stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.