Abstract

The railway transport system is a key factor supporting industrialization in all aspects of human activity. However, in order not to lose its importance, it must meet the challenge of modern civilization. The safety, reliability, and efficiency of railway transport, to a large degree, depend on using highly integrated electronics, which are very sensitive to various disturbances generated in the electric traction system and train or coming from the environment. One of the sources of electromagnetic disturbances are high-voltage (HV) power lines running close to the railway infrastructure. The purpose was to assess the electromagnetic impact of overhead HV transmission lines on buried signaling cables of the railway traffic control system crossbreeding with them. The levels of voltage induced in the cable under steady state and the earth fault in the HV line at various soil resistivity were estimated. A software tool based on a hybrid numerical method that combines circuit theory and electromagnetic field theory was used for computations. It was found that very high voltages may be induced in the signaling cables during earth faults in the HV lines, which may lead to serious interference or damage to the equipment. The results provide useful knowledge for implementing modern railway traffic control systems and protection measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call