Abstract
The split Hopkinson bar (SHB) has been widely used for testing the dynamic mechanical behavior of materials. However, it is hard to involve complex stress conditions in traditional SHB due to its intrinsic characteristics. The Electromagnetic Hopkinson bar (E-Hopkinson bar) has been recently proposed as a solution. Different from the traditional SHB, the stress pulse of the E-Hopkinson bar is generated directly by the electromagnetic force. Therefore, the stress pulse that loads the specimen can be accurately controlled. With this advantage, some experiments that cannot be done with traditional SHB can be conducted by the E-Hopkinson bar technique. In this review, we introduced briefly the basic principles of the E-Hopkinson bar. Some lasted tests, such as symmetrically dynamic compression/tension of materials, interlaminar fracture of composites, dynamic Bauschinger effect of metals, intermediate strain rate tests, and dynamic multi-axial tests were also introduced. This new technique will be helpful for those researchers in the field of solid mechanics, especially when the strain rate and complex stress condition are involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.