Abstract

Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLC tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam's eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.